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Abstract—Tuberculosis (TB) continues to be a serious global
health issue, and building accurate models to understand and
predict its spread is critical for controlling outbreaks. This work
utilizes a system of nonlinear ordinary differential equations
(ODEs) to simulate TB transmission and compares four nu-
merical methods for solving these equations: Heun’s method,
the classical fourth-order Runge–Kutta (RK4), the Adaptive
Runge–Kutta method, and Physics-Informed Neural Networks
(PINNs). Each method is evaluated in terms of accuracy and
computational efficiency, using mean squared error (MSE) and
execution time as primary metrics. The results indicate that
RK4 provides the highest accuracy, while the adaptive method
achieves faster performance with acceptable precision. Although
PINNs require longer training times, they demonstrate strong
generalization capabilities beyond the original data range and
perform well under limited data conditions. These findings
highlight the trade-offs among speed, accuracy, and flexibility in
solving ODEs for disease modeling, and suggest that PINNs may
offer valuable advantages in real-world, data-driven scenarios
where conventional methods are less effective.

I. INTRODUCTION

Tuberculosis (TB) remains one of the most common and
deadly infectious diseases worldwide. Each year, millions of
new cases and deaths are reported, particularly in developing
countries. Caused by Mycobacterium tuberculosis, TB pri-
marily affects the lungs but can also spread to other organs.
Despite ongoing public health efforts and treatment strategies,
its transmission continues to pose a significant challenge,
especially in the presence of HIV co-infection and antibiotic
resistance.

To understand and predict the dynamics of TB spread,
mathematical modeling is frequently employed. These models
help simulate infection patterns, evaluate the effectiveness
of interventions, and guide public health decision-making. A
commonly used approach is the SEIR-based compartmental
framework, which divides the population into Susceptible (S),
Exposed (E), and Infectious (I). In this work, an extended
model is considered by incorporating a fourth compartment
(L), representing loss of sight. This yields a nonlinear system
of four ordinary differential equations (ODEs) as proposed in
[2].

Due to the complexity of such models, accurately and
efficiently solving the resulting ODEs is essential. Classical
numerical methods such as Heun’s method and the fourth-
order Runge–Kutta (RK4) have long served as reliable tools
for this purpose. More advanced techniques, such as the

Adaptive Runge–Kutta method (RK45), improve computa-
tional efficiency by dynamically adjusting the step size during
simulation. In parallel, data-driven approaches like Physics-
Informed Neural Networks (PINNs) have emerged as promis-
ing tools, especially when data is sparse or noisy.

This paper implements and compares four numerical tech-
niques—Heun’s method, RK4, Adaptive RK, and PINNs—for
solving the TB transmission model. Each method is evaluated
based on accuracy, using Mean Squared Error (MSE), and
execution time. The comparison highlights the trade-offs in
performance and suggests directions for applying these meth-
ods in real-world epidemiological modeling.

II. LITERATURE REVIEW

In the work of Kanwal et al. [3], the authors proposed a
TB model comprising five compartments: Susceptible (S),
Latent (L), Infected (I), Under Treatment (T), and Recovered
(R). The model incorporates nonlinear transitions driven by
bilinear infection terms such as SI, LI, and IT, and features
feedback mechanisms that couple compartments tightly.
While the system is mathematically well-posed, its complex
nonlinear structure presents challenges when solved using
classical fixed-step methods. Although the exact step sizes
used by Kanwal et al. are not stated, their results suggest
that numerical instability occurs with relatively large steps,
requiring finer resolution to ensure convergence. The authors
report that the 4th order Runge Kutta (RK4) method may
yield inaccurate or even unstable numerical results unless
very small time steps are used. These instabilities are due
to the method’s inability to adapt to the stiffness and fast
transients intrinsic to the model’s dynamics.
E. D. Tadesse, M. A. Bhat, and A. Ayele, in their 2024 paper
titled “A deterministic compartment model for analyzing
tuberculosis dynamics considering vaccination and reinfection
[4], introduced an extended ODE-based TB model that
accounts for two important real-world factors: vaccination
and reinfection. The model divides the population into
several compartments, including vaccinated individuals and
those who may become reinfected after recovering. This
approach allows the simulation of TB behavior in populations
where immunity may wane or where treatment is incomplete
or inconsistent. While the structure is comprehensive, the
authors focus on theoretical equilibrium behavior and basic
simulation rather than applying specific numerical solution



methods. This limits the paper’s applicability to this project,
which emphasizes solving ODEs using multiple numerical
techniques (such as Runge–Kutta–Fehlberg, Heun, and
adaptive methods). Additionally, while the model is insightful
in its handling of reinfection dynamics, it does not include
the concept of differential infectivity—central to our selected
model—and does not simulate the dynamics of ”loss of sight”
patients, which is a key feature of the system this paper works
with. The simulations use fixed parameter values without
exploring solver performance, convergence, or sensitivity,
making it less suitable for evaluating numerical accuracy
and efficiency—core goals in our study. For these reasons,
while the paper provides valuable background and ideas for
future model enhancements, it was not used as the primary
basis for this paper’s solutions of the ODE system. Instead,
it is considered a relevant but supplementary reference for
understanding extended TB dynamics.

In their work, Syafruddin et al. presented a numerical
approach to modeling the transmission of tuberculosis using
a classical SIR (Susceptible–Infectious–Recovered) framework
[5]. The authors applied the fourth-order Runge–Kutta method
(RK4) to solve the system of ordinary differential equations
and validate the model using real TB incidence data from
Makassar, Indonesia. Despite the model being relatively simple
in structure — with no latent or reinfection compartments
— its strength lies in demonstrating how a robust numerical
method like RK4 can be effectively used to simulate disease
dynamics with high accuracy and stability. The results show
that RK4 captures the spread of TB over time and aligns
closely with reported data, reinforcing the method’s reliability.
This approach is utilized as one of the main numerical
techniques that will be implemented to solve equations [1-
4].
Recently, a technique to solve systems of differential equa-
tions using neural networks, calling Physics Informed Neural
Networks (PINNs) has emerged. In their paper, M. Raissi, P.
Perdikaris, and G. Karinakaris [6] proposed implementing a
neural network that encodes the physical nature of any system
of differential equations through its loss function and, given
sufficient data points and a proper architecture, can estimate
accurately the solution of that system. Their approach will
be among the ones implemented in this paper to solve the
differential equation system mentioned in the introduction.
The notable advantage of this technique is its ability to solve
notoriously difficult differential equations without having to
rely on a small step size or losing any accuracy. As shown
in [6], the paper employed an implicit Rungue-Kutta scheme
for Burger’s equation with 500 stages and the PINN was able
to approximate that scheme in a single step with an error of
8.2∗10−4, the lowest error ever reported for this problem and
2 orders in magnitude smaller than the previous lowest error
value. Due to how effective this technique is, several papers
have employed this technique to solve other differential equa-
tions. A notable paper is the master’s thesis of A. Johannessen
[7], which outlined the architectures that succeeded for solving

various types of differential equations using PINNs, like linear
PDEs, non-linear PDEs, and non-linear ODEs – our interest in
this paper. The architectures proposed by both [6] and [7] were
the basis for the architecture and parameters selected for the
proposed PINN model in this paper. In their paper, Pal et al.
developed a Physics-Informed Neural Network (PINN) model
to simulate and predict tuberculosis dynamics, particularly in
diabetic patients a population with elevated TB risk due to
immunosuppression [8]. The model formulates the problem
using ODEs and embeds them within the neural network’s
training loss, ensuring that solutions conform to biological
laws despite noisy or scarce data. Implemented using the
DeepXDE library, the network simultaneously estimated latent
variables such as the susceptible S , infected I , and treated T
populations over time. By combining data loss and physics
loss, An Adam optimizer with a learning rate of 0.001 is
employed to minimize total loss , and the network parameters
are initialized using a method such as the Glorot normal initial-
izer. By minimizing the combined loss the PINN framework
produced reliable parameter estimates and temporal forecasts.
This approach highlighted the advantage of incorporating
domain knowledge into neural architectures, especially for
epidemiological modeling with limited observations.

In their paper, Lu et al. introduced DeepXDE, a Python
library designed to solve differential equations using deep
learning [10]. Their framework supports forward and inverse
problems in ODEs, PDEs, and fractional systems. In the con-
text of disease modeling, DeepXDE facilitates the implementa-
tion of PINNs by providing automatic differentiation, compact
code structure, and flexible architecture design. Though not
focused on tuberculosis, the library’s capabilities made it
central to building the model used by Pal et al., reinforcing
its role as a powerful tool for data-driven differential equation
modeling.

III. ODE SYSTEM DESCRIPTION

To simulate the spread of tuberculosis (TB), we adopt a
compartmental SEIL model that divides the population into
four groups: Susceptible (S), Exposed (E), Infectious (I), and
Latent (L). The model is governed by a system of nonlinear
ordinary differential equations (ODEs), each describing the
rate of change for one compartment over time.

Let Y (t) = [S(t), E(t), I(t), L(t)]. The dynamics of the
model are given by:

dS

dt
= Λ− βS(I + δL)− µS (1)

dE

dt
= (1− p)βS(I + δL) + r2I − (µ+ k(1− r1))E (2)

dI

dt
= pβS(I + δL) + k(1− r1)E + γL

− (µ+ d1 + ϕ(1− r2) + r2)I (3)
dL

dt
= ϕ(1− r2)I − (µ+ d2 + γ)L (4)

Each term corresponds to a biological or epidemiological
process:



Λ = 2 (year−1): recruitment rate into the susceptible popula-
tion
β = 0.025: transmission coefficient
δ = 1: adjusts the infectivity of latent individuals
p = 0.3: fraction of individuals who progress directly to the
infectious stage
µ = 0.0101: natural death rate
k = 0.005: progression rate from exposed to infectious
r1 = 0, r2 = 0.8182: early treatment and successful recovery
rates
ϕ = 0.02: rate of transition from infectious to latent
γ = 0.01: reactivation rate from latent to infectious
d1 = 0.0227, d2 = 0.20: death rates for infectious and latent
individuals

The model is simulated over a 20-year period using the
following initial conditions:

S(0) =
Λ

µ
≈ 198.02, E(0) = 1.0, I(0) = 0.0, L(0) = 0.0

These values represent an endemic scenario where one
exposed individual is introduced into an otherwise steady-state
population. The SEIL framework allows us to capture both
direct transmission and complex behaviors like relapse, treat-
ment, and reactivation, making it well-suited for evaluating
numerical methods applied to real-world epidemic models.

IV. METHODOLOGY

This paper explores several methods to solve the system
represented by equations 1-4. The first method is the Heun
method, a method known for its simplicity and precision over
Euler’s method. The second method is the 4th order classical
Runge-Kutta method. This method is widely known for its
precision in solving ODE systems as well as its relative speed.
The third method is adaptive runge-kutta method, which is a
robust method combining both speed and precision on demand.
Finally, the paper implements the first-ever use of Physics In-
formed Neural Networks (PINNs) to solve the aforementioned
coupled ODE system. The implementation for each method
was done in Python. All methods were estimated from t = 0
to t = 20 except for PINNs, which was computed on that
interval as well as the interval from t = 0 to t = 100 to test its
extrapolation accuracy. Each method’s solutions were plotted
on the same graph as the solutions of [1] using matplotlib. The
error of each method was computed as the mean square error
between the solutions of [1] for each compartment and the
method’s solutions. Each method was timed using Python’s
timeit library for 1000 repeats with one execution per repeat.
The average of those times was calculated and labeled as the
average execution time of the said method.

A. Heun method

Heun’s method relies on improving euler’s method. First,
the initial prediction from euler’s method is obtained (taking
the S compartment as an example:

S̃n+1 = Sn + h · fS(En, In, Ln) (5)

This prediction is used to estimate the slope at the point
Sn+1. Then the average slope between the slope at the next
point and the slope at the current point is calculated. This new
slope is then used to estimate the true next value:

Sn+1 = Sn +
h

2
[fS(En, In, Ln) + fS(En+1, In+1, Ln+1)]

(6)
This method was implemented in python with the inputs

being the step size h and a list of the initial values. The
solution was calculated at h = 0.5 and the solutions, mean
square error, and the elapsed time were recorded.

B. Classical 4th order Runge Kutta Method

The Runge-Kutta methods are widely used numerical tech-
niques for approximating solutions to ordinary differential
equations (ODEs), especially when analytical solutions are
difficult or impossible to obtain. These methods are essential in
scientific disciplines such as physics, biology, and engineering,
where systems often evolve over time based on complex
interactions.

A first-order ODE can generally be written as:

dy

dt
= f(t, y), y(t0) = y0

where the rate of change of the quantity y is given as a function
of time t and the value of y itself. The goal is to compute the
approximate value of y at a series of time points.

The 4th Order Runge-Kutta (RK4) method is one of the
most commonly used algorithms for numerical integration of
ODEs. It achieves a high level of accuracy by estimating the
solution at each time step using a weighted average of four
slope calculations.

To estimate yn+1 from yn, the RK4 method computes [2]:

k1 = f(tn, yn) (slope at the beginning)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f(tn + h, yn + hk3)

Then the next value is given by [2]:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

This approach significantly improves the accuracy of the
solution without a large computational burden. The solution
was calculated at h = 0.5. In many real-world models, such
as infectious disease dynamics, the system consists of multiple
coupled differential equations. For instance, in the tuberculosis
(TB) model, we consider four state variables in our equation:

y(t) = [S(t), E(t), I(t), L(t)]

representing susceptible, exposed, infectious, and latent pop-
ulations, respectively.



Each variable has its own rate of change:[
dS

dt
,
dE

dt
,
dI

dt
,
dL

dt

]
= f(y, parameters)

The RK4 method can be directly extended to handle such
systems by treating the state variables as vectors and per-
forming the operations element-wise. All k1, k2, k3, k4 are
computed as vectors, and the update rule applies identically.

C. Adaptive Runge Kutta Method

Adaptive Quadrature(AQ) is a technique for numerical in-
tegration that is characterized by dynamic step size. The step
size is adjusted so that small intervals are used in regions
of rapid variations and larger intervals are used where the
function changes gradually. The chosen method is applied at
two levels of refinement and the difference between these two
levels is used to estimate the truncation error. If the truncation
error is less than the set tolerance, no further refinement is
required, and the integral estimate is acceptable. If the error
is too large, the step size is refined and the process repeated
until the error falls within acceptable levels. The total integral
is the summation of the integral estimates.

Due to the recursive nature of this technique. It is expected
to be time consuming and computationally heavy for low
tolerance values. However, It surely provides an accurate
approximation for problems that is too hard or nearly im-
possible to solve analytically. As AQ is used for numerical
integration, its principles are fundamental to how ODEs are
solved numerically through adaptive step size ODE solvers.
The ODE is Transformed into an integral, implicitly. Consider
an initial value problem for the S compartment:

dS

dt
= f(E, I, L), S(t0) = S0 (5)

To find St1 for t1 > t0, both sides of (1) can be integrated
and simplified into: Sy(t1) = S(t0) +

∫ t1
t0

f(E, I, L)dt, (6)
This shows that solving an ODE numerically involves

approximating an integral at each step. The challenge is that
the integrand f(E, I, L) depends on the solution itself. So,
at any point t between t0 and t1, to evaluate the integrand,
the value of E, I, L is needed. ODE solvers, like Runge-
Kutta(RK) methods, are used to estimate E, I, L within the
interval to approximate the integral.

Similar to adaptive Simpson’s, where two estimates are
made, RK methods, of order 4 and 5, are calculated using
mostly the same function evaluations which is computationally
efficient. To calculate the estimates Sn+1, with RK methods,
the integral in (6) becomes a weighted sum of s intermediate
values, called stages or slopes, denoted ki, where each ki is
an evaluation of the function f(Sn): ki = f(Sn+

∑s−1
j=1 asjkj

S(t1) = S(t0) + h
∑s

i+1 biki
Where:
• ci (nodes) represent the fraction of the step h at which

the function is evaluated for each stage.
• asj (weights for intermediate stages) determine how the

previously calculated kj values contribute to the estimate

of S at which f is evaluated for the current stage ki. This
means each ki only depends on k1, ..., ki−1.

• bi (weights for the estimate) specify how each stage ki
contributes to the final approximation of Sn+1.

These values can be combined in what is called Butcher
Tableau for convenience [10]. each of these values are depends
on the order of the RK method used. Here is the Butcher
Tableau for RK of order 4, bi, and of order 5, b̂i.

Fig. 1. The Butcher Tableau describing the coefficients of the rk4 and rk5
methods used in adaptive runge kutta [10]

The Local Truncation Error(LTE) is estimated by the for-
mula: LTE ≈ y

(5)
n+1 − y

(4)
n+1 If the LTE is less than or equal

to the set tolerance, the higher order solution is accepted as
the result of the current step and the integration proceeds. If
the LTE is too large, the step is rejected, and the solver re-
estimates with a smaller step size.

Step size prediction is what defines the solver to be adap-
tive. It is done using the estimated error and the orders
of the two methods that is used for estimation: hnew =
hold.F.(

T
LTE )

1
(p+1) , where T is the set tolerance, p+ 1 is the

order of the higher-order method, which is 5 in DP method,
and F is a safety factor, 0.8 or 0.9, that prevents oscillations
and ensures robustness. Limits are also often placed on how
much the step size can change in a single step, not increasing
by more than a factor of 5 or decreasing by less than a factor
of 0.2.

D. PINN

1) Neural Network Architecture : A Physics Informed
Neural Network (PINN) model was developed to approximate
the tuberculosis compartment values as continuous functions
of time. The PINN is a fully connected forward neural network
that takes a single input t and outputs the four compartment
variables S(t), E(t), I(t) and L(t) simultaneously (one output
neuron for each compartment). The network consists of an
input layer, several hidden layers of neurons, and an output
layer of 4 dimensions. This paper’s implementation utilized
two hidden layers with 128 neurons each and Tanh activation
functions (a smoothly saturating nonlinearity) for all hidden
units. This network size was chosen to provide sufficient



capacity to capture the dynamics of the system. The output
layer applies the softplus activation function to ensure all
predicted compartment values remain non-negative

2) Physics-Informed Neural Network Formulation: The
PINN is trained to satisfy the system of ordinary differential
equations (ODEs) that govern the tuberculosis model, in lieu
of using a traditional numerical solver. Let fS , fE , fI and fL
denote the right-hand sides of the ODEs in equations 1-4. Let
Sθ(t) be the neural network’s prediction for S at time t, where
theta represents all trainable weights and biases. The same
notation is assumed for Eθ(t) ,Iθ(t) and Lθ(t) . 4 types of
losses were used to guide the network into the correct solution.
The first loss is the physics residual, describing how well
the model fits the structure of the equation. For a particular
collection point tc, automatic differentiation (provided by
PyTorch) was used to compute the time derivative of the
network’s output at that point, e.g. dS

dt |(t=tc) . The S physics
residual RS(t) is then formed as RS(t) =

dS
dt |(t=tc) − fS(tc)

Where fS(tc) is the R.H.S of equation 1 estimated at E(tc),
I(tc), and L(tc). Similar procedures were followed to estimate
RE ,RI and RL. Since this residual is the difference between
L.H.S and R.H.S at any of equations [1-4], the ideal value for
it must be 0. To ensure the continuous accuracy of the model at
any collection point, a set of 200 collection points from t = 0
to t = 25 was used to estimate the physics loss in the loss
function across the entire time region of interest. The tensors
of estimate from each compartment are then judged using the
selected criterion against a tensor of zeros. This results in 4
scalars LS−physics,LE−physics, LI−physics and LL−physics,
each represents the loss of a particular ODE from equations
1-4. To estimate one scalar representing the entire physics loss,
a weighted sum was employed.

Lphysics = λS · LS-physics + λE · LE-physics

+ λI · LI-physics + λL · LL-physics (7)

The weights of each loss were determined empirically through
the corresponding loss value during experimentation. The
higher the loss, the lower the weight and vice versa. This
ensures equal contributions from each ODE equation without
making the model biased towards one equation only.
The second loss is the initial condition loss. The provided
initial conditions are at t0 = 0. Thus, a tensor was formed from
Sθ(t0), Eθ(t0) ,Iθ(t0) and Lθ(t0). This tensor was judged
against a tensor of the real initial conditions using the selected
criterion. This also results in another scalar, LIC representing
how well the model follows the initial condition.
The third loss is the initial derivative loss. Using the initial
conditions, the derivative terms dS

dt ,
dE
dt ,

dI
dt and dL

dt can be
estimated at t = 0 from equations 1-4. Those real values
are made into a tensor and judged against the network’s time
derivatives at t = 0 via autograd using the selected criterion.
This results in a third scalar, LIC-Derivative representing how
accurately the model is following both the initial conditions
and the physics of the ODE system.
The fourth loss is the data loss. A small number of solution

points for which high confidence values of the compartments
are available from a conventional ODE solver were used as a
final loss for the model. For each of the known data points,
the solution at that data point was compared to the model’s
prediction. In the implementation, a 2D tensor representing the
true solutions from t = 0 to t = 20 was judged against the
tensor produced by the neural network for the same time points
using the chosen criterion. This results in a single scalar Ldata
representing how well does the model follow the data points.
The reasoning behind using this loss will be elaborated upon
in the results section. The total loss for the network is hence
estimated as:

L = λphysics · Lphysics + λIC · LIC

+ λIC-derivative · LIC-derivative + λdata · Ldata (8)

Where each of the coefficients is determined empirically.
3) Training Procedure and Model Parameters: The PINN

training was implemented in Python using PyTorch. NumPy
was used for general numerical routines. Matplotlib was used
for visualization of results. The model training was performed
on a standard workstation and took advantage of GPU accel-
eration for faster computation. The chosen criterion was mean
square error. The network was trained using a two-phase opti-
mization strategy, which was proven in literature to be effective
in PINN applications. In the first phase Adam Optimizer was
used with an initial learning rate of 0.001 and an exponential
decay of 1% every 1000 epochs (a stochastic gradient descent
method with adaptive learning rates) gradually decrease the
learning rate as training progressed. The Adam phase lasted
30000 epochs. During this phase, adaptive loss weighting and
curricilum learning were implemented as shown in Table I
below:

Epoch λphysics λdata

0 < epoch < 1000 1 1000
1000 ≤ epoch < 3000 10 1000
3000 ≤ epoch < 7000 100 1000
7000 ≤ epoch < 12000 100 100
12000 ≤ epoch < 20000 100 10

epoch ≥ 20000 100 1

TABLE I
TRAINING SCHEDULE FOR PHYSICS AND DATA LOSS WEIGHTS

Starting with a low physics coefficient and gradually in-
creasing it is standard practice in literature. It aims to define
the boundaries of the model by initial conditions and a rough
estimation with physics. As the model converges into the
correct parameters, the coefficient for physics is increased
since their gradients decrease as the model becomes more
accurate. The reasoning behind the data points loss coefficient
will be elaborated upon in the results section. In the second
phase of training, L-BFGS optimizer, a quasi-Newton full-
batch optimization method, was utilized. L-BFGS was used to
fine-tune the network parameters and achieve very low training
error once the solution was already close to the optimum. The
optimizer ran until convergence (with a maximum of a few
hundred iterations, which was sufficient for the loss to plateau).



The combination of Adam (for robust, fast initial convergence)
and L-BFGS (for precise final optimization) leverages the
strengths of both optimizers and is commonly recommended
in PINN implementations. At the end of training, the PINN
provided a continuous approximation of the compartment
dynamics that satisfied the tuberculosis ODE system to high
accuracy.

V. RESULTS

A. Heun method results

The method demonstrates acceptable accuracy in approx-
imating the tuberculosis compartment values over the time
range of 0 to 20 years. The Mean Squared Errors (MSE)
compared to the reference solution are as shown in Table
II The closeness of the method to the solution of [1] is

Compartment MSE
S 3.687817
E 3.394948
I 0.022697
L 0.000002

TABLE II
MEAN SQUARED ERROR FOR EACH COMPARTMENT IN HEUN METHOD

demonstrated in figure 2 The median execution time for

Fig. 2. The solution of Heun’s method compared to the solution of [1]

this method is about 0.67961 ms. Thus, although the Mean
Squared Errors (MSEs) obtained using this method are higher
compared to more advanced methods like Runge-Kutta, the
computational efficiency compensates for the slight loss in
accuracy. Therefore, this method is particularly useful in
applications where execution speed is more critical than high
accuracy, such as in real-time or embedded systems.

B. Classical 4th order Runge Kutta Results

The method demonstrated the most accurate results out of
all methods implemented in this paper in approximating the
tuberculosis compartment values over the time range of 0 to
20 years. The Mean Squared Errors (MSE) compared to the
reference solution are as follows: The closeness of the method
to the solution of [1] is also demonstrated in figure 3

Compartment MSE
S 0.000129
E 0.000120
I 0.000001
L 0.000000

TABLE III
MEAN SQUARED ERROR FOR EACH COMPARTMENT IN CLASSICAL RUNGE

KUTTA

Fig. 3. The solution of classical rungue kutta compared to the solution of [1]

Those results indicate a very accuarate computation of the
solution for the ODE system. This accuracy was achieved with
only a step size of 0.5. This allowed the method to demonstrate
a reasonable time of execution, with a median of 1.2 ms.

C. Adaptive Runge Kutta results

The adaptive method implemented demonstrates high ac-
curacy in approximating the tuberculosis compartment values
over the time range of 0 to 20 years. The Mean Squared Errors
(MSE) compared to the reference solution are as follows:
The closeness of the method to the solution of [1] is also

Compartment MSE
S 0.016306
E 0.015111
I 0.000112
L 0.000000

TABLE IV
MEAN SQUARED ERROR FOR EACH COMPARTMENT IN ADAPTIVE RUNGE

KUTTA

demonstrated in figure 4
These results indicate that the adaptive integration method

closely follows the reference solution, with particularly high
accuracy for the L (Latent) compartment, where the MSE is
effectively zero down to 6 significant figures. This is largely
due to the low magnitude of numbers generated in the L
compartment, resulting in a very small absolute error. The
errors for S and E are slightly higher but still within an
acceptable range, while I shows very low error. This suggests
that the method captures the dynamics of the system well.
The time taken by adaptive rk method is the fastest out of all



Fig. 4. The solution of adaptive rk compared to the solution of [1]

methods in this ppaer. The median time taken is only 0.0595
ms. This shows that the adaptive runge kutta method provides
a very reliable accuracy in a fast time of computation.

D. PINN Results

1) Early experiments and the necessity of datapoints: At
first, the PINN was estimated without relying on data loss.
This resulted in graphs similar to Figure 5. As shown from
the figure, the model converged at a trivial solution where
none of the inputs change. Although this solution invalidates
the physics of the ODE, the model couldn’t escape the local
minimum this solution provided. Several approaches were
tested to mitigate this issue. One approach was to expand
the dimensions and the depth of the neural network. Several
architectures were tested, all of which yielded the same trivial
solution result. Those architectures are summarized below in
Table V.

Fig. 5. The solution of the PINN model without the assistance of data points

To force the model into escaping the trivial solution, an
additional loss term, defined as the ratio between the final

Number of hidden layers Neurons per layer
5 128
3 256
9 60
9 128
5 512

TABLE V
THE ARCHITECTURES TESTED TO TRAIN A MODEL WITHOUT DATA

POINTS, ALL OF WHICH DID NOT YIELD CORRECT RESULTS

S prediction and the initial S prediction multiplied by 105,
was introduced. Since the true solution has the S decreasing
with time, this loss condition aimed to add a large loss
corresponding to the trivial solution. This did not work too,
with the model being stuck at a local minimum with a loss
of 105. A subsequent approach was removing this term and
enforcing the physics loss with a multiplier of 100 million and
an adam learning rate of 2. The goal was to give a push to
the model through a large learning rate and large gradients
to escape the inaccurate local minima into the true solution.
This approach did not work too, with the model being stuck
at the same local minima with a very large loss. The same
test was repeated but with a learning rate of 10−3 for adam,
the same results were observed. Thus, it was concluded that
without a hint of errors directing the model to the true solution,
the model will converge to a wrong trivial solution. Research
should be conducted to determine if there is a PINN network
with a set of parameters that absolutely converges for this
problem without data points.

2) Results of using data points: To guide the model into the
true solution, a set of data points were estimated using Gauss-
Legendre quadrature. The points were selected from t=0 to
t=20 with a step size of 0.5. This resulted in 40 data points
that were converted to a tensor and used to train the model.
After experimenting with data points, it was determined that
the values of L were 2 orders of magnitude lower than I and
E, which were in turn 2 orders of magnitude lower than S.
This was reflected in the losses of each. The losses of L were
2 orders of magnitude lower than I and E, whose losses was
in turn 2 orders of magnitude lower than the loss of S. To
ensure that each compartment contributed equally to losses,
the values of the physics loss coefficients were selected as
following:

Coefficient Value
λS 0.3
λE 30
λI 30
λL 30000

TABLE VI
PHYSICS LOSS COEFFICIENTS

Which reduces the physics loss equation to:

L = 0.3Lphysics + 30LIC + 30LIC-derivative + 30000Ldata

The chosen values for λIC and λIC-derivative were chosen to be
100 and 1000, respectively. The selected curriculum learning



for λdata, outlined in the methodology, was chosen such that
at the beginning of the training, the data points have a very
large weight that forces the model into converting to a correct
minimum. As the training continues, the model’s accuracy
becomes higher and higher, which reduces the need to rely
largely on the data points. Since they on their own have an
inherent error from the numerical integration, relying less on
them as training progresses allows the model to fine tune
its trained parameters to rely more on the ODE system’s
physics and initial conditions, which results in a more accurate
training. This reasoning can be shown in Figure 6. At the
beginning, the model starts with a very high loss. As the
model progresses towards epoch 3000, the loss is reduced by
an order of magnitude, indicating the model arriving at the
correct region for the true solution. Around epoch 7000, the
model has already achieved a significantly lower loss. Thus,
the data loss coefficient is reduced to allow the model to rely
more in physics and initial conditions. The same reasoning
can be followed as the model approaches the final epochs to
illustrate the reasoning behind the chosen curriculum learning.

Fig. 6. The loss of the model at different epochs. It converges into the true
minimum around epoch 5000

Figure 7 shows the model’s solution compared to the numer-
ical solution from [1]. As inferred from the graph, the model
perfectly follows the general trend and the correct values for
the entire range of the solution provided by [1]. The values of
mean square error across the time range was computed; the
results are shown in Table VII Several other experiments with

Compartment MSE
S 1.37
E 1.27
I 0.009
L 0.000001

TABLE VII
MEAN SQUARED ERROR FOR EACH COMPARTMENT IN THE PINN MODEL

different architecture were conducted. In all of them, the model
converged absolutely to the correct solution given sufficiently
good architecture and sufficiently accurate points. The model
performed exceptionally well during extrapolation too. Figure
8 shows the model’s extrapolation over the range [0:100],
five times the original training range: As can be shown from
the figure, the model’s accuracy is exceptionally high for all

Fig. 7. The solution of the PINN model compared to solution of [1]

Fig. 8. The model’s extrapolation up to t=100, demonstrating solid accuracy

compartments. The true solution was computed using Gauss-
Legendre quadrature from t=0 to t=100 with 10000 points.
Despite using only 40 data points that were computed from
numerical integration on the range of 0 to 20, the PINN was
able to extrapolate a range five times the original range without
losing much accuracy. This is illustrated below in the table
showing the MSE across the entire range: Despite taking a

Compartment MSE
S 0.281159
E 0.264011
I 0.002425
L 0.000004

TABLE VIII
MEAN SQUARED ERROR FOR EACH COMPARTMENT OVER THE REGION

FROM T=0 TO T=100

relatively long time to train, the PINN demonstrates excel-
lent accuracy and reliability. Furthermore, unlike numerical
methods, the PINNs are step size independent. The network
provides a continuous function that can be used to calculate



the output at any time point, which is beneficial for continuous
analysis and visualizing stiff systems.

E. Summary of all results

Figure 9 summarizes all the results of each method im-
plemented and tested in this paper compared to the result
of [1]. As can be inferred from the figure, all methods did
exceptionally well at predicting the correct solution. Table IX

Fig. 9. The results from all methods plotted against the solution of [1]

Shows the different mean square errors of each compartment
of each method. As described in the results section, the
classical 4th order runge kutta is the most accurate one of
them for a chosen step size.

Var Heun’s Method Classical RK4 Adaptive RK PINN Model
S 3.687817 0.000129 0.016306 1.37
E 3.394948 0.000120 0.015111 1.27
I 0.022697 0.000001 0.000112 0.009
L 0.000002 0.000000 0.000000 0.000001

TABLE IX
MEAN SQUARED ERROR COMPARISON ACROSS DIFFERENT METHODS FOR

EACH COMPARTMENT

Table X shows time comparisons of the executions of each
method. As per the table, the adaptive rk method is the fastest
by a very large margin. It’s followed by the PINN model.
However, it should be noted that this time doesn’t take into
account the training time, which lasts for about 4 minutes.

Method Median Execution Time (ms)
Heun’s Method 0.67961

Classical 4th Order Runge-Kutta 1.2
Adaptive Runge-Kutta 0.0595

PINN Model 0.38
Solve IVP Python 6

TABLE X
EXECUTION TIME COMPARISON ACROSS THE DIFFERENT METHODS

VI. CONCLUSION

In this study, four distinct methods were examined for
solving a nonlinear system of ordinary differential equa-
tions modeling tuberculosis transmission: Heun’s method,
the classical fourth-order Runge–Kutta (RK4), the Adaptive
Runge–Kutta method, and Physics-Informed Neural Networks
(PINNs). Each method was evaluated in terms of accuracy and
computational efficiency to highlight their respective strengths
and limitations.

The results confirm that RK4 provides the highest accuracy,
achieving minimal mean squared error across all compart-
ments, making it a dependable choice for precise modeling.
The adaptive method, while slightly less accurate, was the
fastest and most efficient, offering a compelling trade-off for
real-time or resource-constrained scenarios. Heun’s method,
though relatively simple and less accurate, showed satisfactory
performance with low computational cost, making it useful in
applications where rapid estimation is preferred.

On the other hand, the PINN approach demonstrated unique
capabilities. Although training required significant time and
careful tuning, PINNs excelled in generalization, offering a
smooth, continuous approximation that extended well beyond
the original training domain. This property is particularly valu-
able in data-limited environments or when modeling scenarios
requiring extrapolation.

Overall, the findings underscore the importance of selecting
numerical techniques based on specific problem requirements.
While traditional solvers remain powerful tools for structured
systems, data-driven approaches like PINNs open new avenues
for integrating physics with machine learning, potentially
transforming how epidemiological modeling is approached in
complex and uncertain conditions.
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