
Tuberculosis with
Differential Infectivity
R E S E A R C H P R O P O S A L

TEAM 5

N U M E R I C A L M E T H O D S C O U R S E S B E G 1 0 8

TABLE OF CONTENTS
Introduction

SEIL Model & ODE’s

Non-Self-Starting Heun’s Method

Adaptive Quadrature

01

02

03

Runge-Kutta Fehlberg Method

Physics Informed Neural
Network

Future Improvements

Comparative Analysis

05

06

07 Conclusion

LSODES

Numerical Schemes

TB Modeling Approach

04

08

SECTION 01

Introduction

Problem Definition

Tuberculosis (TB) is a contagious disease caused by
Mycobacterium tuberculosis, primarily affecting the
lungs.

 It remains one of the world’s most widespread infectious
diseases, with nearly 2 billion people infected.

Despite ongoing control efforts, global TB cases are
rising, largely due to its strong link with HIV infection.

SECTION 02

SEIL Model & ODE’s

S

E

S E I L MODEL

I

L Latent (post-infection or
partially treated)

Modeling

Susceptible (healthy people who can potentially catch TB)

Exposed (but not yet infectious)

Infectious

Y is the vector of all compartments (Y=[S,E,I,L])

INPUTS

Modeling

Parameter Description Estimated Value

Λ Recruitment rate 2

β Transmission rate 0.025

δ Infectivity of L compared to I 1

p Proportion rapidly progressing 0.3

μ Natural death rate 0.0101

k Progression rate from E to I 0.005

r₁ Effectiveness of chemoprophylaxis 0

r₂ Rate of recovery from I 0.8182

φ Rate from I to L 0.02

γ Reactivation rate from L to I 0.01

d₁ Death rate from I 0.0227

d₂ Death rate from L 0.2

1) Model Parameters:

INPUTS

Modeling

2) Time (t) :
Independent variable over the simulation period (e.g., 0 to
20 years).

3) Initial Conditions (Y₀):

S(0): Susceptible population = Λ / μ (198.01982)
E(0): Exposed individuals = 1.0
I(0): Infectious individuals = 0.0
L(0): Lost-to-follow-up individuals = 0.0

OUTPUTS

Modeling

S

E

I

L Latent (post-infection or
partially treated)

Susceptible

Exposed (but not yet infectious)

Infectious

Λ is the recruitment rate (e.g., births or entries into the population) and has a
positive effect

β S (I + δL) is the rate at which susceptible people become exposed , it’s a non
linear term and has the strongest negative effect when L and I are high .

They get infected through contact with infectious (I) or latent (L) individuals.

δ is a scaling factor for how infectious L is compared to I.

μS is the natural death rate of the susceptible group.

 ODE’S
 Equation 1: Governs the change in the number of susceptible individuals

Inflow (positive terms):
β(1 - p) S (I + δ L): Individuals who get infected but don’t immediately become infectious is the
main source of new exposed individuals
r₂ I: Previously infectious individuals who relapse into exposed

Outflow (negative terms):
Natural death occurs at a rate μ
k(1 - r₁) E: Progression to the infectious stage happens at a rate k, adjusted by the factor (1−r1),
where:

r1 is the fraction diverted away from I (into latent or lost compartments).
this term has the strongest negative effect assuming r1 is zero, which means the
chemoprophylaxis is completely ineffective, i.e., no one is prevented from progressing from E
to I.

 ODE’S
 Equation 2: Governs the change in the number of exposed individuals

**Chemoprophylaxis is the use of medication to prevent disease like a vaccine or pills

 Inflow (positive terms) :
S - directly via the fraction p of new infections has a fast progression - immediate
infection becomes infectious
E - progressing via k(1 - r₁) from E to infectious this and the previous point has the
major inflows to I pool
L - reactivating with γ (reactivation from latent)

Outflow:
Natural death μ
 d1 I , Death due to TB
Progression to L with φ(1 - r₂) It is Partial treatment leading to latent TB
 successful Treatment with r₂

 ODE’S
 Equation 3: Governs the change in the number of infectious individuals

Inflow:

From I via φ(1 - r₂) → those not successfully treated but not fully infectious anymore

Outflow:

Natural death μ

 d L, Death in latent 2

Reactivation to I with rate γ (Go Back to infectious) it has the strongest negative effect

especially if reactivation is common

 ODE’S
 Equation 4: Models the latent compartment

**Reactivation refers to when a person who was previously infected with tuberculosis (but not actively sick)
develops active, contagious TB later, usually after a long period of latency.

SECTION 03

TB Modeling Approach

TB Modeling Approaches

1.Kanwal et al. developed a 5-compartment TB model with treatment and recovery, but
fixed-step methods like RK4 led to numerical instability due to system stiffness.

2.Tadesse et al. (2024) incorporated vaccination and reinfection into the TB model,
offering realistic dynamics but focusing only on theoretical analysis.

3.Syafruddin et al. applied RK4 to a basic SIR model using real TB data, showing the
method’s reliability and accuracy even in simple models.

4.Raissi et al. introduced PINNs, a method that embeds differential equations into neural
network training, achieving highly accurate solutions without requiring small time
steps.

5.Pal et al. applied PINNs to TB modeling in diabetic patients using DeepXDE, combining
physics-informed and data-driven loss to handle complex, uncertain dynamics
effectively.

We surveyed several recent works tackling tuberculosis (TB) modeling through both
traditional numerical and modern machine learning techniques:

SECTION 04

LSODE-Reference Method
METHOD 00

LSODES (Livermore Solver for ODEs)

Definition:

Switches between two methods:
Adams-Moulton (predictor-corrector) – for non-stiff regions
BDF (Backward Differentiation Formula) – for stiff regions

A powerful numerical solver for both stiff and non-stiff ODE systems.

Automatically detects stiffness

Controls:
Step size
Method order
Local truncation error

METHODOLOGY
Numerical Implementation(in R):

Implemented in R using deSolve (R package) and lsodes() (ODE solver)

RHS equations coded in tb_1.R (function that calculates the RHS of the TB

ODE system at any given time t and for any given state vector y=[S,E,I,L])
Two initial cases:

Case 1 (ncase = 1): Equilibrium
Case 2 (ncase = 2): Epidemic trigger with E(0)=1

Time range: 0 to 20 years, 41 points
Tolerances: rtol = 1e-8, atol = 1e-8

METHODOLOGY

LSODES Behind the Logic:

In BDF mode:
 Uses Newton-Raphson iteration
 Computes/approximates Jacobian

Starts with Adams-Moulton (non-stiff)

Monitors integration behavior:
 If step size is limited by stability → switches to BDF

 Always seeks the largest safe step size

RESULTS:

Case 1: Equilibrium
Initial Conditions: E=I=L=0, S=Λ/μ​

Result:
No dynamics, system remains at
equilibrium

LSODES did minimal work:
Number of ODE calls = 53

RESULTS:

Case 2: Epidemic
Initial Conditions: E(0)=1, all others at
equilibrium

LSODES detected stiffness and switched to
BDF when needed

System shows epidemic behavior:
Decreasing S(t), Sharp rise in E(t),
Slower, delayed rise in I(t), L(t)

LSODES effort:
Number of ODE calls = 133

Non-Self-Starting Heun’s Method

SECTION 04
METHOD 01

NON-SELF-STARTING HEUN’S METHOD

A two-step predictor-corrector method used to numerically solve systems of

first-order ordinary differential equations (ODEs).

Called “non-self-starting” because it requires a special step (typically Euler’s

method) to compute the first value before applying the Heun updates.

Based on an improved version of Euler’s method that reduces local truncation

error and increases accuracy.

Definition:

METHODOLOGY

Compute a preliminary estimate of the next state Y using the current slope:n+1

Recalculate the slope at the predicted point Yn+1

Average it with the original slope at Y ​, then compute the corrected next value:n

Predictor step (Euler Estimate): :

Corrector Step (Slope Averaging):

ADVANTAGES
Accuracy: More accurate than Euler’s method by using slope at both ends of interval.

Simplicity: Easy to implement and understand; requires only two function evaluations per
step.

Versatile: Works well with single ODEs and systems (e.g., epidemiology, physics,
chemistry).

Stable for moderately stiff problems compared to Euler.

LIMITATIONS
Cannot be used alone for the first step (requires Euler or another method).

Not as powerful for highly stiff systems compared to implicit methods.

Compartment MSE

S 3.687817

E 3.394948

I 0.022697

L 0.000002

RESULTS:
Heun’s method performs very well overall, particularly for the Infectious and Latent
compartments, where the mean square errors are shown to be extremely low.

Runge-Kutta Fehlberg

SECTION 04
METHOD 02

The Runge-Kutta methods are a family of iterative techniques used to solve

ordinary differential equations (ODEs) numerically.

These methods approximate the solution by evaluating the derivative (slope)

at multiple points within each time step and then combining these to get an

accurate estimate of the next value.

Among them, the 4th-order Runge-Kutta method (RK4) is the most widely

used due to its balance between accuracy and computational cost.

RUNGE-KUTTA-FEHLBERG METHOD:
Definition:

It calculates 4 slopes at each step, one at the beginning and two at the midpoint
using the previous slopes and one at the end of the interval.
These slopes represent estimates of the rate of change, and are calculated using
a chosen step size h.

The mid point slopes are given more weight, to

better capture the system’s behavior.

After computing the four slopes, we take a
weighted average of them to estimate the
next value of the variable. Then apply this to
each equation in the TB model (S,E,I,L) to
update all values at each time step.

METHODOLOGY:

RK4 offers high accuracy because it's a fourth-order method, the error decreases
rapidly with smaller step sizes, and even with moderate step sizes, it remains
very precise with extremely low (almost zero) mean squared errrors.

 RESULTS :

Compartment MSE

S 0.000128928

E 0.000119767

I 8.57439x10-8

L 6.70993x10-11

Adaptive Quadrature

SECTION 04
METHOD 03

Numerical integration methods that dynamically adjust step size based

on estimated local error to maintain a specified level of accuracy.

It doesn’t represent a certain method. It represents an integration

technique.

It can be used to solve ODEs by transforming them into a form that

contains an integral. That integral can be approximated each step to

get the solution.

Definition:

ADAPTIVE QUADRATURE

Key Properties:
 Accuracy control.
Computational effeciency

Converting the ODEs to Integral form

METHODOLOGY

The local truncation error is simply the difference
between the two estimated values. Finally, the step
size can be adjusted using that error, the desired
tolerance, and a safety factor to avoid oscillations.

METHODOLOGY
An ODE solver generally consists of two numerical methods with
different orders of accuracy to estimate the integral, a local truncation
error calculation method, and a step adjustment method that uses the
calculated error.

Our solver is based on the Dormand-Prince from
the Runge-Kutta family. It uses RK methods of
orders 4 and 5. However, they aren’t calculated
separately. They mostly use the same function
evaluations.

Dormand-Prince is the fastest method due to its reuse of computations. The
relatively high accuracy is achieved by its dynamic step adjustment.

RESULTS:

Compartment MSE

S 0.016306

E 0.015111

I 0.000112

L 0.000000

Physics-Informed Neural
Networks (PINNs)

SECTION 05

A deep learning Approach for solving Differential Equations
PINNs are a class of neural networks that incorporate physical laws (usually in the
form of differential equations) into the training process..

PINNs Method

It originates from the principle of universal approximation of neural networks:
given sufficient data and the proper configuration, neural networks can learn to
replicate the relationship between virtually any set of inputs and outputs.

It was first proposed in 2017 by Raissi et al. to solve partial differential equations
(PDEs) with a neural network [1]

Mean Square Error (MSE) was selected as a criterion for calculating the loss
between a set of predicted points and a set of actual true points

[1] Rom, M. (2022). Physics-informed neural networks for the Reynolds equation with cavitation modeling. Tribology International,
179, 108141. https://doi.org/10.1016/j.triboint.2022.108141

We can evaluate the function at any given time t after training, unlike numerical
methods, due to the continuity of the function modelled by the PINN

WHY PINNs Over a Numerical Solution ?

The function was proven to have a high extrapolation accuracy for data points
further than those used in training

When the training is done, the model can be saved and evaluated later in a
constant time complexity at any point t while yielding the same accuracy
In terms of speed:

Gauss-Legendre quadrature took 0.30 seconds,
PINN took only 0.0038 seconds — 7900% faster.

Approach
We start by defining the model parameters and solving
the ODEs numerically to generate reference data.
 A neural network is then trained to predict the TB compartments over time
 by minimizing a loss based on
the differential equations, initial conditions, and known data points.
 Once trained, the PINN provides accurate, continuous predictions
which we compare and visualize against traditional methods.

NN Class

Initialize the NN input and output sizes and
defines the architecture using fully connected
layers.

Activation Function : uses tanh by
default, which helps in normalizing
the outputs.

The neural network learns the structure of the ODE system
through the loss function defined to train the network.

How Neural Network Learns

The loss function is composed of 4 components that capture the

entirety of the ODE system

1. Physics Loss

2. Initial Condition Loss

3. Initial Derivatives Loss

4. Data Points Loss

The physics loss represents how well the model follows the actual ODE
system that we attempt to solve.

Losses in the PINNs Method

The data points loss is the difference between the model’s predictions at
various time points with known value and the true values at those known
points.

The initial condition loss is the difference between the actual value of each of
the outputs at t=0 and the model’s estimated values at t=0.

The outputs S, E, I, and L were estimated. The derivative (gradient) at each of
those outputs at the corresponding time was also estimated. The values were then
used to compute the difference between the L.H.S and the R.H.S in the ODE
equations shown on the left. The difference is the physics residual, also known as
the physics loss.

Losses in the PINNs Method
The initial derivative loss is the difference between the value of the first
derivative (from the ODE equations) at the initial conditions and the model’s
prediction for those derivatives.

To find those data points, an integration solution (Gauss-Legendre) was utilized to
find the values of the ODE system at 40 equally spaced points from t=0 to t=20

The physics loss was computed as:

L = 0.1* S + 10 * L + 10 * I +1000 * L physics ode loss ode loss ode loss ode loss

where each ode loss is the physics residual of a particular ODE in the ODE system.

Losses in the PINNs Method

The parameters λ and λ are initialized to be 1 and 100, respectively.physics initial

Epoch

0 < epoch< 1000 1 1000

1000 < epoch < 3000 10 1000

3000 < epoch < 7000 100 1000

7000 ≤ epoch < 12000 100 100

12000 ≤ epoch < 20000 100 10

epoch ≥ 20000 100 1

dataλλ physics

The Model’s Architecture

The main optimizer is adam with a learning rate of 0.001 and an exponential
scheduler with a gamma of 0.99

The Model’s Parameters

The parameters of the LBFGS optimizer as the following:
 lr=1.0,
 max_iter=100000,
 max_eval=100000,
 history_size=50,
 tolerance_grad=1e-7,
 tolerance_change=1.0 * np.finfo(float).eps
 line_search_fn="strong_wolfe"

The model runs for 30000 epochs, after which it’s optimized again by LBFGS optimizer
L-BFGS, a quasi-Newton optimizer, a well-known second-order optimizer.it is used to
fine-tune the network parameters and achieve very low training error once the solution
was already close to the optimum. The optimizer ran until convergence

Models’
Results

Pinn Model

Model Convergence ?

Epochs VS Total Loss

Comparative Analysis

SECTION 06

 Graphical Comparison of All Methods:

 Enlarged Comparison of All Methods:

 Graphical Comparison of MSE:

 Results

Method Most Accurate Fastest Execution Extrapolation
Support

Heun ✗ Fast ✗

RK4 ✓ Very Accurate Moderate ✗

Adaptive RK ✓ Accurate Fastest ✗

PINN ✓ Accurate Fast (post-training) ✓

Average Mean Squared Error
(MSE) per Method:

Compartment Heun RK4 Adaptive RK PINN

S 3.6878 0.000128928 0.016306 1.37

E 3.3949 0.000119767 0.015111 1.27

I 0.0227 8.57439x10-8 0.000112 0.009

L 0.000002 6.70993x10-11 0 0.000001

CODES:

Click on the link below to find the codes and plots
of all methods and our AI model:

SECTION 07

 Conclusion

Conclusion
We modeled TB dynamics using a SEIL system of nonlinear ODEs and solved it with several numerical
and AI-based methods.

Classical Methods (Heun, RK4, Adaptive Quadrature):
 1.Provided high accuracy, especially RK4 and Adaptive Quadrature.
 2.Heun was simple but less effective for stiff problems.

 LSODES:
Handled stiffness automatically and served as a strong benchmark.

PINNs (Physics-Informed Neural Networks):
Required training but delivered fast, flexible, and highly generalizable results.
Showed potential for data-limited scenarios and extrapolation.

Comparative Insight:
Each method has trade-offs in speed, accuracy, and scalability.
Classical solvers are reliable; PINNs are promising for future AI-driven modeling.

Future Improvements

SECTION 08

1

2

Future Improvements
PINN models that can solve this ODE without data points should
be researched, a good start might be taking the log scale of S.

The model's architecture can be further optimized for extrapolation
 by tweaking the parameters contributing to the loss values of L.

Reduces large value range in S
Makes training more stable and smoother
Helps the network focus on small changes

L has small values and is hard to learn
Increasing its loss weight improves accuracy
Forces model to better capture latent dynamics

Any Questions?

Thank you!

